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Motivation

The study of infinitary combinatorics will not be particularly useful in any high school 
math olympiad or competition, ever.

You can either perceive this lecture as a break from that form of mathematics and an 
exploration into higher level pure math, or you can see it as an exercise in developing 
your proof skills*. 

*Particularly, such proofs covered in this lecture are of the same nature you will see in power rounds, such as the PUMaC Power Round. However, there is no guarantee that this specific topic 
will ever be covered in one of those competitions.



Introduction

Infinitary combinatorics, or combinatorial set theory, is a field of mathematics that 
extends finite combinatorial results to the infinite. Of particular interest in the field is 
extending Ramsey Theory, which covers generalized pigeonhole principles.  You do not 
need to know finite Ramsey Theory for this lecture.

We will cover a singular important result and go over the proof.



Background



Pigeonhole Principle

If you have n objects and m containers with n > m, then at least one container will have 
more than 1 object. 

This guy must go into one of the already 
taken containers, which means one 
container has more than one person.



Proof

Let n > m. We will assign each object a container.

Suppose for contradiction that each container has at most one object. Then there are 
only at most n = m objects, contradiction. :)



Set Theoretic Knowledge

Here are some facts to know:

● |A| means the number of elements in A
● ⍵ = {0,1,2,3,...} (think of this as the natural numbers)

○ |⍵| is infinite
○ You can biject many sets into this set, proving they have the same size. For example, the set of 

nonnegative even numbers. The bijective function is f(x) = 2x. 

● [A]n is the set of all subsets of A that have size n.
○ If A = {0,1,2}, then [A]2 = {{0,1}, {0,2}, {1,2}}
○ Basically “A choose n”!



Set Theoretic Knowledge (Part 2)

A partition of a set S is a family of sets X where elements in X are disjoint and the union 
of all elements in X is S. 

S

X (partition)

X1 X2 X3



Set Theoretic Knowledge (Part 3)

We can have functions F : S -> {1,...,k} to describe a partition with k partitions. Basically: 
suppose we want to partition S into k pieces. We make X1,...,Xk as the partition. If s ∈ S 
and it is in partition Xi, then F(s) = i.

S

X 

X1 X2 X3
F(     ) = 2



Set Theoretic Knowledge (Part 4)

Suppose X is a partition of [A]n. A set H ⊆ A is homogenous if every element of [H]n is 
included in the same partition. In other words, every n element subset of H is in the 
same partition.

A = {0, 1, 2}
[A]2 = {{0,1}, {0,2}, {1,2}}

X = {
X1 →{{0,1}, {0,2}}, 
X2 →{{1,2}}

}

H = {1, 2}
[H]2 = {{1, 2}}

Everything in [H]2 is in the same partition 
so H is homogenous for this X (in this case 
n=2). 



Combinatorial 
Principles



Infinite Pigeonhole Principle

If an infinite set is partitioned into finitely many pieces, then at least one piece is 
infinite.

(try to prove this yourself)



Proof

Suppose X is our partition of the infinite set S. If every piece of X is finite, then their 
union is finite. Thereby S is finite, contradiction. :)

Finite

Finite

Finite

Finite

Finite!
Recombine to form S



Ramsey Theorem

For positive integers n, k, every partition {X1,...,Xk} of [⍵]n has an infinite homogeneous 
set.

In other words, for every F : [⍵]n → {1,...,k} there is an infinite subset H ⊆ ⍵ such that F is 
constant on [H]n. The function F being constant on [H]n means that for any two elements 
x, y in [H]n, F(x) = F(y).

(the second statement is simply the first expanded and using the function version of a 
partition)



What did that even mean?

Basically, we want to prove a version of the infinite pigeonhole principle but for [⍵]n and 
[H]n instead of just ⍵. 

We want to prove that for a partition of the n element subsets of ⍵, there an infinite 
subset of ⍵ such that its n element subsets are all in the same partition. 



Proof (n = 1 case)

We will induct over n. 

For the base case, n = 1, we have a very neat insight.

Hint: [⍵]1 = {{0}, {1}, {2}, …} and ⍵ = {0, 1, 2, …}



Proof (n = 1 solution)

We can easily biject [⍵]1 into ⍵ and preserve structure. At this point, it is simply just the 
aforementioned infinite pigeonhole principle!

Think about it, we have an infinite set (⍵), and we need to find an infinite set H where all 
1-element subsets of H are in the same partition (in other words, every element of H is 
in the same partition, hence an infinite partition.)

This wonʼt work on higher cases since a bijection from [⍵]>1 to ⍵ doesnʼt necessarily 
preserve structure. Unfortunate.



Proof Idea for Inductive Case

Letʼs go over the general idea first. The whole point of an inductive proof is to use the 
fact that it is true for n to prove it is true for n+1. This could work great on the function F 
which sends [⍵]n to {1,...,k}. Itʼs equivalent and easy to work with. Therefore, somehow, 
we need to show that if it is true for all F : [⍵]n → {1,...,k}, then it is true for all F : [⍵]n+1 → 
{1,...,k}.



Trying to Construct that Function

So, we need to show that every F : [⍵]n+1 → {1,...,k} is constant on some [H]n+1 where H is 
an infinite subset of ⍵.

Let us construct a family of functions Fa : [⍵ - {a}]n → {1,...,k}

0

…

a

…

0

…

a

…

⍵ ⍵ - {a}
Remove ʻaʼ

Bijection still 
exists

…
Construct n element 
subsets



Trying to Construct that Function (Part 2)

For each Fa : [⍵ - {a}]n → {1,...,k}: Fa(x) = F({a} ∪ x)

So: F1({2,3}) = F({1,2,3}) (in this case n=2, n+1=3)

We do this so we can try to abuse the property that it works for n onto n+1.

While the inductive hypothesis itself states itʼs true for [⍵]n, we can easily prove it is 
actually true for any [S]n where S is an infinite set that bijects into ⍵. 

Somet
hing

a

Union with {a}Somet
hing

Somet
hing

Somet
hing



Continued Proof -  A Sequence

From the induction hypothesis we know that for all a ∈ ⍵ and S ⊆ ⍵, there exists an HS
a 

⊆ S - {a} where Fa is constant over [HS
a]n (use the fact from the previous slide).

Let us construct an infinite sequence a0, a1, … and S0, S1, …

a0 = 0

S0 = ⍵

At this point in the proof, you may get lost so I will try my best to help visualize.



Proof Sequence (Part 2)

We will decide to build our sequence as so (see bottom right). Recall that HS
a ⊆ S - {a}.

If you think about how every Si+1 works, it is actually is just HS_i
a_i ⊆ Si - {ai} such that Fa_i 

is constant on [HS_i
a_i]

n. So Fa_i is constant on [Si+1]n. Additionally, the set {aj : j > i} is a 
subset of Si+1 (check the definition of ai+1 to verify). Since Fa_i is constant on [Si+1]n, it will 
be constant on [{aj : j > i}]n as it is a subset. Visualization on next slide.



Proof Sequence Visualization
a0 = 0, S0 = ⍵

…… …

… … …

… …

Remove ai

Subset where Fa_i is constant on [...]n



Proof Sequence Visualization (Part 2)

… …

…

Constant 
on this by 
def

………

…
Therefore, constant on this

n-element subsets



Continuation of Proof

Weʼve established Fa_i to be constant on [{aj : j > i}]n. In other words, Fa_i({ai+1,ai+2,...ai+n}) = 
Fa_i(any n element subset of {aj : j > i}) = some constant c. Let G(ai) = c. 

Recall that the sequence a is strictly increasing, and thus we can collect it into a set 
without losing anything: {ai : i ∈ ⍵}. 

Claim: There is an infinite subset H` ⊆ {ai : i ∈ ⍵} such that G is constant on H`. 

Try to prove this yourself!  (donʼt overthink it)



Proof of Claim

Once again, use the infinite pigeonhole principle! (or the n = 1 case)

We know there as an easy bijection {ai : i ∈ ⍵} to ⍵, and thus we can apply the infinite 
pigeonhole principle as G maps H` to the same partition.

……

{ai : i ∈ ⍵}

1 … k

G



Final Claim

We claim that F is constant on [H`]n+1.

Consider some x1 < x2 < … < xn+1 in H`. By the fact that G is constant on H`, we know that 
G(x1) = Fx_1({x2,...,xn+1}). And this is true for any choice of x1 … xn+1 in H`.

……

H`

c

G sends everyone to the 
same partition

Remember that Fa_i(any n element subset of {aj : j > i}) = G(ai)
and since x2…xn+1 are all > x1, we apply the function and get the result G(x1) = Fx_1({x2,...,xn+1}).



End of Proof

From that, we can realize two things that are important:

1. Any choice of x1…xn+1 in H` is sent to the same partition
2. Fx_1({x2,...,xn+1}) =  F({x1,x2,...,xn+1}); (since Fa(x) = F({a} ∪ x))

Therefore, F is constant on [H`]n+1, which thereby completes the claim and therefore the 
proof. :)



A Quick Note

This theorem generalizes easily to a variety of interesting results that are foundational 
to infinitary combinatorics, and sometimes are even the subject of current research.

Obviously, since one proof took so long, we wonʼt be able to cover it.

Here are some of the aforementioned results:

- Erdős–Rado Theorem (generalizes Ramsey to larger sets)
- Milliken–Taylor Theorem (generalizes to tree structures)
- Large Cardinal Program (active research area)



Thank You
:)


