Free Monoids

Jason Zhang

September 2025

1 Monoids

Definition 1.1. We say that a set S equipped with a binary operation $\bullet : S \times S \to S$ is a monoid iff \bullet is associative over all elements of S and there exists some $e \in S$ such that $e \bullet a = a \bullet e = a$ for all $a \in S$.

Equivalently, a monoid is simply a *semigroup* with the identity condition added. And because a semigroup is just a magma with the property of associativity, we can conclude that a monoid is closed under \bullet . We can also think of e as a unique 0-ary operator (in other words, constant) which helps us identify the monoid. So we would write (S, \bullet, e) to specify a specific monoid. Below is a list of monoids:

- (i) $(\mathbb{N}, +, 0)$
- (ii) $(\mathbb{Z}^+, \times, 1)$ where \times is the usual multiplication over the integers.
- (iii) For all sets S, $(\mathcal{P}(S), \cup, \varnothing)$ where $\mathcal{P}(S)$ is the set of all subsets of S.
- (iv) All singleton sets closed under a binary operation.

It is quite easy to find more, a lot of algebraic structures satisfy it (any group works). The Category Theorist can give us a more general perspective; however, it is far too powerful to be of useful consideration here.

2 Alphabets and Kleene Closure

Definition 2.1. Let Σ denote an alphabet of characters and ε denote the empty string.

For example, we could have $\Sigma = \{a, b\}$. For our purposes, a string can be considered as a finite ordered tuple of symbols and concatenation simply merges the tuples. We will come back with a better definition later.

Definition 2.2. The Kleene Star applied to a set of symbols S is generated by

- (i) $S_0 = \{\varepsilon\}$
- (ii) $S_{i+1} = \{ab : a \in S_i, b \in S\}$ via concatenation.
- (iii) $S^* = \bigcup_{i>0} S_i$

And S^* is the Kleene Closure (or Star) on S.

3 Free Monoid

We can make an equivalent definition of strings and * that is more elegant.

Definition 3.1. For a set A, the free monoid A^* is a monoid operating over all finite sequences of A with concatenation as the binary operator and the empty sequence ε as the identity element.

Therefore, a string is simply a element of the free monoid Σ^* . And indeed, a string being a finite sequence of elements of Σ is no different than being an ordered tuple of symbols in Σ . So the Kleene Star on strings in the usual sense is really just a specific version of the free monoid on an alphabet set Σ . This does imply we see free monoids in other places, and indeed we do. If we can find an isomorphism from a monoid to a free monoid, we can conclude the first one is also free.

Theorem 3.2. $(\mathbb{N}, +, 0)$ is a free monoid.

Proof. Let $\Sigma = \{a\}$ or a singleton set. Consider the free monoid acting on Σ^* and denote it M. We can find an isomorphism $g: (\mathbb{N}, +, 0) \to M$ where $g(n) = a^n$. This is bijective and preserves the other conditions: $g(0) = \varepsilon$ and g(n+m) = g(n)g(m).