
Sqrt Techniques
Raagav Bala, Abhiraj Mallangi, Jason Zhang



Sqrt 
Decomposition



Square Root Decomposition

The idea is to divide a structure of size n into approximately √n blocks of approximately 
size √n while still maintaining some information about the overall structure.

This usually allows us to answer queries very quickly since we will only have to work 
with √n items of data.

It can be shown that √n is best possible division/decomposition of data such that each 
block is representative of its elements (for a range query problem). 



Proof of Claim



Visual Representation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

a:

… … … …b:

We can see how the original array (a) was split into √n blocks each with √n data. We then 
run some sort of calculation (min, max, sum, etc.) so that we can represent each block 
with a singular value, which goes into a new array b.

calculation

calculation calculatio
n

calculation

n elements



Finding Minimum

For demonstration purposes, here is a problem where sqrt decomposition is efficient.

Part 1: You are given an array a[0..n-1] and q queries. In each query, you are given l, r (0 
<= l < r < n) and you must find the minimum of the subarray a[l..r] efficiently. 

After you think you have the solution for the above, consider this extra challenge (part 
2): after each query, exactly one index i (0 <= i < n) will have its value changed (the 
change persists). 



Solution

We will simply use the idea of sqrt decomposition and represent each block with the 
minimum of its elements. Upon receiving l and r, we can quickly identify which blocks 
are included within the range. It is very likely that there will be blocks that do not have 
every element included, so we will also have to add all of the elements of the “partial 
blocks” in. However, there can be at most √n blocks and √n partial block elements, so it 
is still O(√n). A visual example will be provided on the next slide.

As for updating values, we simply to need to identify which block is being updated and 
recalculate the minimum (if necessary). This can be done in O(√n) worst case.



Visual Solution

The grey are the affected blocks within the range [l,r].

[l,r]

See handout for more details.



Implementation

A full implementation is too long to include here. Please see this link 
(https://tinyurl.com/5xbzmuwm) to find an implementation for the first part of the 
problem. 

If you want to implement this yourself, we recommend using ⌊√n⌋+1 for both the block 
size and amount of blocks. There may be an extra block that doesnʼt do anything, but it 
doesnʼt matter.

https://ide.usaco.guide/OPDVhWNJoLzLNd6sGl-
https://tinyurl.com/5xbzmuwm


Linked Code (if unable to view link)

This is the same code linked on the 
implementation slide without 
comments.

Try to see the full code for a better 
explanation



Part 2 Solution
If we receive queries of the form 

ind val

then to maintain the properties of the array we use the following code. Better 
implementation may be found on online resources (see the end slide).



Part 1 Pseudo-Code

In case you cannot read Python, 
here is a pseudo-code 
implementation.



Subalgorithms



Clinton’s Definition of Subalgorithms



Sum of Progression



Naive Solution?

Share!



Prefix Sums?

Share!3



Integer Partitions



Intuition

If A_1 + A_2 + … + A_k = n, then there are at most O(√n) distinct values among all the A_i 
values. 

The proof of this is that to maximize the number of distinct values, we would need each 
A_i to be distinct from each other (so k values). We would also want our A_i values to be 
as small as possible (if every number is very large, then we can split some of those 
numbers). Therefore, let us use 1+2+3+...+k=k(k+1)/2. This sum is less than or equal to n, 
and through some basic algebra we conclude that k is of O(√n).



Weights Problem

You are given a list of positive integer weights [w_1, w_2, …, w_k] such that 
w_1+w_2+...+w_k=n. Find all possible weight sums that can be created.



Solution

We can solve this problem easily in O(nk) by iterating through w, and using dp with DP[i] 
= whether i is a possible sum or not. To be more efficient, we can process equal w_i 
together, which introduces a O(√n). For each group, we can edit DP in O(n) in several 
simple ways (think about remainder classes), resulting in a time complexity of O(n√n).



Additional Problems and Practice

1. USACO 2024 December Contest, Gold Problem 1. Cowdependence
2. USACO 2025 US Open Contest, Gold Problem 2. Election Queries
3. Codeforces Round 136 (Div. 1) B. Little Elephant and Array
4. Codeforces Round 199 (Div. 2) E. Xenia and Tree
5. Codeforces Round 233 (Div. 1) D. Instant Messanger
6. Codeforces Round 254 (Div. 1) C. DZY Loves Colors
7. Codeforces Round 340 (Div. 2) E. XOR and Favorite Number


