
The λ-Calculus
Guest Lecture

Jason Zhang
May 2025

Code++



Table of contents

1. Introduction

2. The Language

3. Basic Rules

4. Functions

Boolean Algebra

Arithmetic

Advanced Techniques

5. Applications and Beyond

1



Introduction



Motivation

We want to understand a form of computation involved in many
different forms of programming, especially declarative and
functional programming. Here are some languages that either rely or
use elements of the λ-calculus.

1. Haskell
2. Lisp
3. Python
4. Scala
5. Java
6. Much More

Learning about the underlying logic concerning this topic is very
important for computer science and mathematics. If you are
planning to major in CS you will probably learn about this. Learning
about these topics can help with developing new algorithms and
design patterns.

2



Imperative vs. Declarative

In imperative focused languages (C++, C, etc.), there is modification of
state. For example, consider the simple procedure x← x+ 1. After
the procedure runs, x takes on a new value. Imperative languages
have their computation modeled by the Turing Machine. The Turing
Machine runs on an infinite tape of symbols, changing the symbols
and moving along it depending on how it was coded.

On the other hand, declarative languages (Haskell, Scala, etc.) are
usually stateless. That means, if we assign x to be 3 then it will stay 3.
One underlying computation method for functional programming is
the λ-calculus. It is not the only one.

Theorem (Church, Turing, Kleene)
The λ-calculus and the Turing Machine are equivalent in
computational strength.

3



The Language



Atomic Expressions

There are three notable atomic expressions. There may be a <term>
identifier within the expressions. This means that any other valid
expression can go inside, allowing us to recursively build expressions.

1. x
2. λx.<term>
3. (<term> <term>)

4



Understanding Atomic Expressions

The three previous atomic expressions is defined as follows.

1. Any variable symbol (usually lowercase). Examples x, y, z, etc.
2. The x is again any variable symbol. This defines a function that
takes in a parameter x. Therefore, in more familiar mathematical
notation, we have f(x) = <term>.

3. This denotes function application. Suppose we see (M N). In
familiar notation, this reads as M(N). Realize that N could also
be a function, and M could return another function.

5



Basic Rules



β-Reduction

There is one important fundamental way to get from one true
expression to another. This is known as β-reduction.

β-Reduction
((λx.M) N)→β (M[x := N])

This essentially means that all instances of x in M are replaced with
N.

6



Examples

This concept should not be too foreign, we use it all the time!
Consider this function f(x) = x2 + 2x+ 1. Let us try f(3). We plug in 3
into all instances of x and achieve f(3) = 32 + 2(3) + 1.

Suppose we had ((λx.x2 + 2x+ 1) 3). The expression evaluates to
32 + 2(3) + 1 by β-reduction.

Alert
While this example is nice, it should be noted that in real
λ-calculus we are not free to use things like + or even 3. We must
define everything.

7



α-conversion

While not as important, it is still important to note.

α-conversion
(λx.M[x])→α (λy.M[y])

This simply means we can change the names of variables around as
long as we change it everywhere. There are some ways of doing
λ-calculus without needing α-conversion.

8



Functions



Functions Functions Functions

Functions are anonymous in λ-calculus, meaning they don’t have
names. Although you could give them names if you really wanted to.

One other important thing is that pretty much everything is a
function. Yes, that includes numbers. There is a notion of applying
the function 172 onto × and it would give you something. The result
probably doesn’t make sense, but the computation never made
sense anyways.

9



Multiple Arguments and Currying

Sometimes, we will work with functions that have multiple
arguments. This is already possible without any modifications.
Suppose instead of writing f(x, y), you had (g(x))(y) where g(x)
returns a function that has the value of x fixed. The equivalent in
λ-calculus is left as an exercise.

Writing this can be a laborious task. Thankfully, we can cheat by
doing what is known as “currying”. We will simply modify our
language and write two argument functions as λxy.M. Function
applications will be ((λxy.[. . . ]) M N) where M replaces x first and
then N replaces y via β-reduction.

10



Booleans

We will begin with a simple exercise in regular boolean algebra.

1. What does ⊤ and ⊥ mean?
2. What do the following operations do ∧,∨,¬?
3. Name a universal logic gate.
4. Consider the if statement of the form p→ q. Rewrite this using
only logic gates.

This is important when we construct our logic in λ-calculus.

11



True and False

We will define the True and False functions as follows.

True (⊤)
λxy.x

False (⊥)
λxy.y

The motivation of which will become clear later. We will use TRUE
and FALSE in place of each function to make it less verbose.

12



Negation

We will construct our negation function as follows.

Not (¬)
λx.(x FALSE TRUE)

We will call this NOT for obvious reasons.

An example application onto TRUE.
((λx.(x FALSE TRUE)) TRUE)→β (TRUE FALSE TRUE)→β FALSE. This
works because TRUE picks out the first element, which is FALSE.

Exercises:

1. Rewrite NOT using only λ-expressions.
2. Verify that ((λx.(NOT (NOT x))) M)→β M assuming M is either
TRUE or FALSE.

3. Create the other logic gates.

13



Numbers

We will define numbers using the Church Encoding.

Church Encoding
For any number n ∈ N, n = λfx.(f (f . . . (f︸ ︷︷ ︸

n times

x) . . . ))).

This definition will be useful later. This definition does not define
numbers, but simply n times applying a function. A special case of
this function is a number.
Successor
The function succ informally means +1.

Using this, any number n is equivalent to n succ 0 since the function
succ is applied to 0 n times.

Note that succ does have a formal definition using purely the
λ-calculus.

14



A Reminder

Remember that everything here is a function! So we could compute
some crazy things such as +×+ (this notation is how you would
usually write it). However, doing this takes a very long time.

15



Recursion

There is no function that can reference itself (directly call itself), but
there are functions that can do basically the same thing.

We can choose between the Y-combinator or the Θ combinator.
These are basically fixed point functions. A fixed point in regular
math occurs at x = c if f(c) = c.

Likewise, Θ f→β f (Θ f), as an example.

16



Applications and Beyond



Applications

As previously noted, there are many applications of the λ-calculus. It
is the foundation of languages like Haskell.

On the other hand, it comes quite handy in languages like Python.
Consider the following expression:

lambda x : x + 1

This is just λx.x+ 1. Additionally, knowing the λ-calculus allows for a
strong background in discrete mathematics (a course required in
most colleges for CS) and gives you better knowledge on creating
new algorithms.

17



Higher Order

One last thing to note is that there are many variations and
extensions of the λ-calculus. Here is a list:

1. Typed lambda calculus
2. System F
3. Kappa calculus
4. More!

18


	Introduction
	The Language
	Basic Rules
	Functions
	Boolean Algebra
	Arithmetic
	Advanced Techniques

	Applications and Beyond

